Python OpenCV處理圖像之濾鏡和圖像運(yùn)算
本文實(shí)例為大家分享了Python OpenCV處理圖像之濾鏡和圖像運(yùn)算的具體代碼,供大家參考,具體內(nèi)容如下
0x01. 濾鏡
喜歡自拍的人肯定都知道濾鏡了,下面代碼嘗試使用一些簡(jiǎn)單的濾鏡,包括圖片的平滑處理、灰度化、二值化等:
import cv2.cv as cv
image=cv.LoadImage('img/lena.jpg', cv.CV_LOAD_IMAGE_COLOR) #Load the image
cv.ShowImage("Original", image)
grey = cv.CreateImage((image.width ,image.height),8,1) #8depth, 1 channel so grayscale
cv.CvtColor(image, grey, cv.CV_RGBA2GRAY) #Convert to gray so act as a filter
cv.ShowImage('Greyed', grey)
# 平滑變換
smoothed = cv.CloneImage(image)
cv.Smooth(image,smoothed,cv.CV_MEDIAN) #Apply a smooth alogrithm with the specified algorithm cv.MEDIAN
cv.ShowImage("Smoothed", smoothed)
# 均衡處理
cv.EqualizeHist(grey, grey) #Work only on grayscaled pictures
cv.ShowImage('Equalized', grey)
# 二值化處理
threshold1 = cv.CloneImage(grey)
cv.Threshold(threshold1,threshold1, 100, 255, cv.CV_THRESH_BINARY)
cv.ShowImage("Threshold", threshold1)
threshold2 = cv.CloneImage(grey)
cv.Threshold(threshold2,threshold2, 100, 255, cv.CV_THRESH_OTSU)
cv.ShowImage("Threshold 2", threshold2)
element_shape = cv.CV_SHAPE_RECT
pos=3
element = cv.CreateStructuringElementEx(pos*2+1, pos*2+1, pos, pos, element_shape)
cv.Dilate(grey,grey,element,2) #Replace a pixel value with the maximum value of neighboors
#There is others like Erode which replace take the lowest value of the neighborhood
#Note: The Structuring element is optionnal
cv.ShowImage("Dilated", grey)
cv.WaitKey(0)
0x02. HighGUI
OpenCV 內(nèi)建了一套簡(jiǎn)單的 GUI 工具,方便我們?cè)谔幚斫缑嫔暇帉懸恍┛丶瑒?dòng)態(tài)的改變輸出:
import cv2.cv as cv
im = cv.LoadImage("img/lena.jpg", cv.CV_LOAD_IMAGE_GRAYSCALE)
thresholded = cv.CreateImage(cv.GetSize(im), 8, 1)
def onChange(val):
cv.Threshold(im, thresholded, val, 255, cv.CV_THRESH_BINARY)
cv.ShowImage("Image", thresholded)
# 創(chuàng)建一個(gè)滑動(dòng)條控件
onChange(100) #Call here otherwise at startup. Show nothing until we move the trackbar
cv.CreateTrackbar("Thresh", "Image", 100, 255, onChange) #Threshold value arbitrarily set to 100
cv.WaitKey(0)
0x03. 選區(qū)操作
有事希望對(duì)圖像中某一塊區(qū)域進(jìn)行變換等操作,就可以使用如下方式:
import cv2.cv as cv
im = cv.LoadImage("img/lena.jpg",3)
# 選擇一塊區(qū)域
cv.SetImageROI(im, (50,50,150,150)) #Give the rectangle coordinate of the selected area
# 變換操作
cv.Zero(im)
#cv.Set(im, cv.RGB(100, 100, 100)) put the image to a given value
# 解除選區(qū)
cv.ResetImageROI(im) # Reset the ROI
cv.ShowImage("Image",im)
cv.WaitKey(0)
0x04. 運(yùn)算
對(duì)于多張圖片,我們可以進(jìn)行一些運(yùn)算操作(包括算數(shù)運(yùn)算和邏輯運(yùn)算),下面的代碼將演示一些基本的運(yùn)算操作:
import cv2.cv as cv#or simply import cv
im = cv.LoadImage("img/lena.jpg")
im2 = cv.LoadImage("img/fruits-larger.jpg")
cv.ShowImage("Image1", im)
cv.ShowImage("Image2", im2)
res = cv.CreateImage(cv.GetSize(im2), 8, 3)
# 加
cv.Add(im, im2, res) #Add every pixels together (black is 0 so low change and white overload anyway)
cv.ShowImage("Add", res)
# 減
cv.AbsDiff(im, im2, res) # Like minus for each pixel im(i) - im2(i)
cv.ShowImage("AbsDiff", res)
# 乘
cv.Mul(im, im2, res) #Multiplie each pixels (almost white)
cv.ShowImage("Mult", res)
# 除
cv.Div(im, im2, res) #Values will be low so the image will likely to be almost black
cv.ShowImage("Div", res)
# 與
cv.And(im, im2, res) #Bit and for every pixels
cv.ShowImage("And", res)
# 或
cv.Or(im, im2, res) # Bit or for every pixels
cv.ShowImage("Or", res)
# 非
cv.Not(im, res) # Bit not of an image
cv.ShowImage("Not", res)
# 異或
cv.Xor(im, im2, res) #Bit Xor
cv.ShowImage("Xor", res)
# 乘方
cv.Pow(im, res, 2) #Pow the each pixel with the given value
cv.ShowImage("Pow", res)
# 最大值
cv.Max(im, im2, res) #Maximum between two pixels
#Same form Min MinS
cv.ShowImage("Max",res)
cv.WaitKey(0)
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Spyder中如何設(shè)置默認(rèn)python解釋器
Spyder作為一款流行的Python IDE,支持用戶自定義Python解釋器,包括虛擬環(huán)境的設(shè)置,通過打開Spyder,選擇“Tools”->“Preferences”,在彈出窗口中選擇“Use the following Python interpreter”后,瀏覽并選擇相應(yīng)的解釋器或虛擬環(huán)境路徑2024-09-09
python time.sleep()是睡眠線程還是進(jìn)程
這篇文章主要介紹了python time.sleep()是睡眠線程還是進(jìn)程,通過實(shí)例代碼給大家介紹了Python Sleep休眠函數(shù) ,需要的朋友可以參考下2019-07-07
python opencv實(shí)現(xiàn)運(yùn)動(dòng)檢測(cè)
這篇文章主要為大家詳細(xì)介紹了python opencv實(shí)現(xiàn)運(yùn)動(dòng)檢測(cè),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-07-07
在Python的Flask框架下使用sqlalchemy庫(kù)的簡(jiǎn)單教程
這篇文章主要介紹了在Python的Flask框架下使用sqlalchemy庫(kù)的簡(jiǎn)單教程,用來簡(jiǎn)潔地連接與操作數(shù)據(jù)庫(kù),需要的朋友可以參考下2015-04-04
Python實(shí)現(xiàn)GUI學(xué)生信息管理系統(tǒng)
這篇文章主要為大家詳細(xì)介紹了Python實(shí)現(xiàn)GUI學(xué)生信息管理系統(tǒng),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-01-01

