tensorflow 獲取變量&打印權(quán)值的實(shí)例講解
在使用tensorflow中,我們常常需要獲取某個(gè)變量的值,比如:打印某一層的權(quán)重,通常我們可以直接利用變量的name屬性來獲取,但是當(dāng)我們利用一些第三方的庫來構(gòu)造神經(jīng)網(wǎng)絡(luò)的layer時(shí),存在一種情況:就是我們自己無法定義該層的變量,因?yàn)槭亲詣舆M(jìn)行定義的。
比如用tensorflow的slim庫時(shí):
<span style="font-size:14px;">def resnet_stack(images, output_shape, hparams, scope=None):</span>
<span style="font-size:14px;"> """Create a resnet style transfer block.</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> Args:</span>
<span style="font-size:14px;"> images: [batch-size, height, width, channels] image tensor to feed as input</span>
<span style="font-size:14px;"> output_shape: output image shape in form [height, width, channels]</span>
<span style="font-size:14px;"> hparams: hparams objects</span>
<span style="font-size:14px;"> scope: Variable scope</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> Returns:</span>
<span style="font-size:14px;"> Images after processing with resnet blocks.</span>
<span style="font-size:14px;"> """</span>
<span style="font-size:14px;"> end_points = {}</span>
<span style="font-size:14px;"> if hparams.noise_channel:</span>
<span style="font-size:14px;"> # separate the noise for visualization</span>
<span style="font-size:14px;"> end_points['noise'] = images[:, :, :, -1]</span>
<span style="font-size:14px;"> assert images.shape.as_list()[1:3] == output_shape[0:2]</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> with tf.variable_scope(scope, 'resnet_style_transfer', [images]):</span>
<span style="font-size:14px;"> with slim.arg_scope(</span>
<span style="font-size:14px;"> [slim.conv2d],</span>
<span style="font-size:14px;"> normalizer_fn=slim.batch_norm,</span>
<span style="font-size:14px;"> kernel_size=[hparams.generator_kernel_size] * 2,</span>
<span style="font-size:14px;"> stride=1):</span>
<span style="font-size:14px;"> net = slim.conv2d(</span>
<span style="font-size:14px;"> images,</span>
<span style="font-size:14px;"> hparams.resnet_filters,</span>
<span style="font-size:14px;"> normalizer_fn=None,</span>
<span style="font-size:14px;"> activation_fn=tf.nn.relu)</span>
<span style="font-size:14px;"> for block in range(hparams.resnet_blocks):</span>
<span style="font-size:14px;"> net = resnet_block(net, hparams)</span>
<span style="font-size:14px;"> end_points['resnet_block_{}'.format(block)] = net</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> net = slim.conv2d(</span>
<span style="font-size:14px;"> net,</span>
<span style="font-size:14px;"> output_shape[-1],</span>
<span style="font-size:14px;"> kernel_size=[1, 1],</span>
<span style="font-size:14px;"> normalizer_fn=None,</span>
<span style="font-size:14px;"> activation_fn=tf.nn.tanh,</span>
<span style="font-size:14px;"> scope='conv_out')</span>
<span style="font-size:14px;"> end_points['transferred_images'] = net</span>
<span style="font-size:14px;"> return net, end_points</span>
我們希望獲取第一個(gè)卷積層的權(quán)重weight,該怎么辦呢??
在訓(xùn)練時(shí),這些可訓(xùn)練的變量會被tensorflow保存在 tf.trainable_variables() 中,于是我們就可以通過打印 tf.trainable_variables() 來獲取該卷積層的名稱(或者你也可以自己根據(jù)scope來看出來該變量的name ),然后利用tf.get_default_grap().get_tensor_by_name 來獲取該變量。
舉個(gè)簡單的例子:
<span style="font-size:14px;">import tensorflow as tf</span>
<span style="font-size:14px;">with tf.variable_scope("generate"):</span>
<span style="font-size:14px;"> with tf.variable_scope("resnet_stack"):</span>
<span style="font-size:14px;"> #簡單起見,這里沒有用第三方庫來說明,</span>
<span style="font-size:14px;"> bias = tf.Variable(0.0,name="bias")</span>
<span style="font-size:14px;"> weight = tf.Variable(0.0,name="weight")</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">for tv in tf.trainable_variables():</span>
<span style="font-size:14px;"> print (tv.name)</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">b = tf.get_default_graph().get_tensor_by_name("generate/resnet_stack/bias:0")</span>
<span style="font-size:14px;">w = tf.get_default_graph().get_tensor_by_name("generate/resnet_stack/weight:0")</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">with tf.Session() as sess:</span>
<span style="font-size:14px;"> tf.global_variables_initializer().run()</span>
<span style="font-size:14px;"> print(sess.run(b))</span>
<span style="font-size:14px;"> print(sess.run(w))
</span>
結(jié)果如下:

以上這篇tensorflow 獲取變量&打印權(quán)值的實(shí)例講解就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
ubuntu?20.04系統(tǒng)下如何切換gcc/g++/python的版本
這篇文章主要給大家介紹了關(guān)于ubuntu?20.04系統(tǒng)下如何切換gcc/g++/python版本的相關(guān)資料,文中通過代碼介紹的非常詳細(xì),對大家學(xué)習(xí)或者使用ubuntu具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2023-12-12
Celery批量異步調(diào)用任務(wù)一直等待結(jié)果問題
這篇文章主要介紹了Celery批量異步調(diào)用任務(wù)一直等待結(jié)果問題,具有很好的參考價(jià)值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2023-11-11
python下函數(shù)參數(shù)的傳遞(參數(shù)帶星號的說明)
python中函數(shù)參數(shù)的傳遞是通過賦值來傳遞的。2010-09-09
python re正則匹配網(wǎng)頁中圖片url地址的方法
今天小編就為大家分享一篇python re正則匹配網(wǎng)頁中圖片url地址的方法,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-12-12

