Pytorch入門之mnist分類實例
更新時間:2018年04月14日 08:46:16 作者:denny402
這篇文章主要為大家詳細介紹了Pytorch入門之mnist分類實例,具有一定的參考價值,感興趣的小伙伴們可以參考一下
本文實例為大家分享了Pytorch入門之mnist分類的具體代碼,供大家參考,具體內(nèi)容如下
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'denny'
__time__ = '2017-9-9 9:03'
import torch
import torchvision
from torch.autograd import Variable
import torch.utils.data.dataloader as Data
train_data = torchvision.datasets.MNIST(
'./mnist', train=True, transform=torchvision.transforms.ToTensor(), download=True
)
test_data = torchvision.datasets.MNIST(
'./mnist', train=False, transform=torchvision.transforms.ToTensor()
)
print("train_data:", train_data.train_data.size())
print("train_labels:", train_data.train_labels.size())
print("test_data:", test_data.test_data.size())
train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = Data.DataLoader(dataset=test_data, batch_size=64)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Sequential(
torch.nn.Conv2d(1, 32, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2))
self.conv2 = torch.nn.Sequential(
torch.nn.Conv2d(32, 64, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
self.conv3 = torch.nn.Sequential(
torch.nn.Conv2d(64, 64, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
self.dense = torch.nn.Sequential(
torch.nn.Linear(64 * 3 * 3, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 10)
)
def forward(self, x):
conv1_out = self.conv1(x)
conv2_out = self.conv2(conv1_out)
conv3_out = self.conv3(conv2_out)
res = conv3_out.view(conv3_out.size(0), -1)
out = self.dense(res)
return out
model = Net()
print(model)
optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss()
for epoch in range(10):
print('epoch {}'.format(epoch + 1))
# training-----------------------------
train_loss = 0.
train_acc = 0.
for batch_x, batch_y in train_loader:
batch_x, batch_y = Variable(batch_x), Variable(batch_y)
out = model(batch_x)
loss = loss_func(out, batch_y)
train_loss += loss.data[0]
pred = torch.max(out, 1)[1]
train_correct = (pred == batch_y).sum()
train_acc += train_correct.data[0]
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
train_data)), train_acc / (len(train_data))))
# evaluation--------------------------------
model.eval()
eval_loss = 0.
eval_acc = 0.
for batch_x, batch_y in test_loader:
batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True)
out = model(batch_x)
loss = loss_func(out, batch_y)
eval_loss += loss.data[0]
pred = torch.max(out, 1)[1]
num_correct = (pred == batch_y).sum()
eval_acc += num_correct.data[0]
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
test_data)), eval_acc / (len(test_data))))
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
您可能感興趣的文章:
相關(guān)文章
python數(shù)據(jù)結(jié)構(gòu)之二叉樹的統(tǒng)計與轉(zhuǎn)換實例
這篇文章主要介紹了python數(shù)據(jù)結(jié)構(gòu)之二叉樹的統(tǒng)計與轉(zhuǎn)換實例,例如統(tǒng)計二叉樹的葉子、分支節(jié)點,以及二叉樹的左右兩樹互換等,需要的朋友可以參考下2014-04-04
在Python 3中緩存Exception對象會造成什么后果?
這篇文章主要介紹了在Python 3中緩存Exception對象到底會造成什么后果?下面帶著這個問題一起看看文章的解析,需要的朋友可以參考一下2021-12-12
Pytorch中的Tensorboard與Transforms搭配使用
這篇文章主要介紹了Pytorch中的Tensorboard與Transforms搭配使用,主要是結(jié)合了前兩篇文章的的一個小練習,感興趣的小伙伴可以來練習一下,希望對你的學習有所幫助2021-12-12

