淺談pandas中shift和diff函數(shù)關(guān)系
通過?pandas.DataFrame.shift命令查看幫助文檔
Signature: pandas.DataFrame.shift(self, periods=1, freq=None, axis=0) Docstring: Shift index by desired number of periods with an optional time freq
該函數(shù)主要的功能就是使數(shù)據(jù)框中的數(shù)據(jù)移動,若freq=None時,根據(jù)axis的設(shè)置,行索引數(shù)據(jù)保持不變,列索引數(shù)據(jù)可以在行上上下移動或在列上左右移動;若行索引為時間序列,則可以設(shè)置freq參數(shù),根據(jù)periods和freq參數(shù)值組合,使行索引每次發(fā)生periods*freq偏移量滾動,列索引數(shù)據(jù)不會移動
① 對于DataFrame的行索引是日期型,行索引發(fā)生移動,列索引數(shù)據(jù)不變
In [2]: import pandas as pd
...: import numpy as np
...: df = pd.DataFrame(np.arange(24).reshape(6,4),index=pd.date_range(start=
...: '20170101',periods=6),columns=['A','B','C','D'])
...: df
...:
Out[2]:
A B C D
2017-01-01 0 1 2 3
2017-01-02 4 5 6 7
2017-01-03 8 9 10 11
2017-01-04 12 13 14 15
2017-01-05 16 17 18 19
2017-01-06 20 21 22 23
In [3]: df.shift(2,axis=0,freq='2D')
Out[3]:
A B C D
2017-01-05 0 1 2 3
2017-01-06 4 5 6 7
2017-01-07 8 9 10 11
2017-01-08 12 13 14 15
2017-01-09 16 17 18 19
2017-01-10 20 21 22 23
In [4]: df.shift(2,axis=1,freq='2D')
Out[4]:
A B C D
2017-01-05 0 1 2 3
2017-01-06 4 5 6 7
2017-01-07 8 9 10 11
2017-01-08 12 13 14 15
2017-01-09 16 17 18 19
2017-01-10 20 21 22 23
In [5]: df.shift(2,freq='2D')
Out[5]:
A B C D
2017-01-05 0 1 2 3
2017-01-06 4 5 6 7
2017-01-07 8 9 10 11
2017-01-08 12 13 14 15
2017-01-09 16 17 18 19
2017-01-10 20 21 22 23
結(jié)論:對于時間索引而言,shift使時間索引發(fā)生移動,其他數(shù)據(jù)保存原樣,且axis設(shè)置沒有任何影響
② 對于DataFrame行索引為非時間序列,行索引數(shù)據(jù)保持不變,列索引數(shù)據(jù)發(fā)生移動
In [6]: import pandas as pd
...: import numpy as np
...: df = pd.DataFrame(np.arange(24).reshape(6,4),index=['r1','r2','r3','r4'
...: ,'r5','r6'],columns=['A','B','C','D'])
...: df
...:
Out[6]:
A B C D
r1 0 1 2 3
r2 4 5 6 7
r3 8 9 10 11
r4 12 13 14 15
r5 16 17 18 19
r6 20 21 22 23
In [7]: df.shift(periods=2,axis=0)
Out[7]:
A B C D
r1 NaN NaN NaN NaN
r2 NaN NaN NaN NaN
r3 0.0 1.0 2.0 3.0
r4 4.0 5.0 6.0 7.0
r5 8.0 9.0 10.0 11.0
r6 12.0 13.0 14.0 15.0
In [8]: df.shift(periods=-2,axis=0)
Out[8]:
A B C D
r1 8.0 9.0 10.0 11.0
r2 12.0 13.0 14.0 15.0
r3 16.0 17.0 18.0 19.0
r4 20.0 21.0 22.0 23.0
r5 NaN NaN NaN NaN
r6 NaN NaN NaN NaN
In [9]: df.shift(periods=2,axis=1)
Out[9]:
A B C D
r1 NaN NaN 0.0 1.0
r2 NaN NaN 4.0 5.0
r3 NaN NaN 8.0 9.0
r4 NaN NaN 12.0 13.0
r5 NaN NaN 16.0 17.0
r6 NaN NaN 20.0 21.0
In [10]: df.shift(periods=-2,axis=1)
Out[10]:
A B C D
r1 2.0 3.0 NaN NaN
r2 6.0 7.0 NaN NaN
r3 10.0 11.0 NaN NaN
r4 14.0 15.0 NaN NaN
r5 18.0 19.0 NaN NaN
r6 22.0 23.0 NaN NaN
通過?pandas.DataFrame.diff命令查看幫助文檔,發(fā)現(xiàn)和shift函數(shù)形式一樣
Signature: pd.DataFrame.diff(self, periods=1, axis=0) Docstring: 1st discrete difference of object
下面看看diff函數(shù)和shift函數(shù)之間的關(guān)系
In [13]: df.diff(periods=2,axis=0)
Out[13]:
A B C D
r1 NaN NaN NaN NaN
r2 NaN NaN NaN NaN
r3 8.0 8.0 8.0 8.0
r4 8.0 8.0 8.0 8.0
r5 8.0 8.0 8.0 8.0
r6 8.0 8.0 8.0 8.0
In [14]: df -df.diff(periods=2,axis=0)
Out[14]:
A B C D
r1 NaN NaN NaN NaN
r2 NaN NaN NaN NaN
r3 0.0 1.0 2.0 3.0
r4 4.0 5.0 6.0 7.0
r5 8.0 9.0 10.0 11.0
r6 12.0 13.0 14.0 15.0
In [15]: df.shift(periods=2,axis=0)
Out[15]:
A B C D
r1 NaN NaN NaN NaN
r2 NaN NaN NaN NaN
r3 0.0 1.0 2.0 3.0
r4 4.0 5.0 6.0 7.0
r5 8.0 9.0 10.0 11.0
r6 12.0 13.0 14.0 15.0
以上這篇淺談pandas中shift和diff函數(shù)關(guān)系就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python數(shù)學(xué)符號計算庫SymPy使用方法詳解
SymPy?是一個?Python?的數(shù)學(xué)符號計算庫,提供了強(qiáng)大的工具來進(jìn)行符號數(shù)學(xué)運(yùn)算、代數(shù)操作、求解方程、微積分、矩陣運(yùn)算等,它廣泛應(yīng)用于數(shù)學(xué)教學(xué)、物理學(xué)、工程學(xué)、統(tǒng)計學(xué)和概率論等領(lǐng)域,本文將結(jié)合具體案例,詳細(xì)介紹?SymPy?的使用方法,需要的朋友可以參考下2024-08-08
django Model層常用驗(yàn)證器及自定義驗(yàn)證器詳解
這篇文章主要介紹了django Model層常用驗(yàn)證器及自定義驗(yàn)證器詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-07-07
Python實(shí)現(xiàn)字典序列ChainMap
容器數(shù)據(jù)類型包括數(shù)組list,字典dict以及元組tuple等。本篇主要介紹了ChainMap字典序列的使用,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-06-06
基于tensorflow指定GPU運(yùn)行及GPU資源分配的幾種方式小結(jié)
今天小編就為大家分享一篇基于tensorflow指定GPU運(yùn)行及GPU資源分配的幾種方式小結(jié),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-02-02
Python實(shí)現(xiàn)的各種常見分布算法示例
這篇文章主要介紹了Python實(shí)現(xiàn)的各種常見分布算法,結(jié)合實(shí)例形式總結(jié)分析了Python常見的各種分布算法相關(guān)實(shí)現(xiàn)技巧,包括二項(xiàng)分布、離散分布、泊松分布、正態(tài)分布、指數(shù)分布等算法實(shí)現(xiàn)方法,需要的朋友可以參考下2018-12-12

