Python Numpy 數(shù)組的初始化和基本操作
Python 是一種高級的,動態(tài)的,多泛型的編程語言。Python代碼很多時候看起來就像是偽代碼一樣,因此你可以使用很少的幾行可讀性很高的代碼來實現(xiàn)一個非常強大的想法。
一.基礎(chǔ):
Numpy的主要數(shù)據(jù)類型是ndarray,即多維數(shù)組。它有以下幾個屬性:
ndarray.ndim:數(shù)組的維數(shù)
ndarray.shape:數(shù)組每一維的大小
ndarray.size:數(shù)組中全部元素的數(shù)量
ndarray.dtype:數(shù)組中元素的類型(numpy.int32, numpy.int16, and numpy.float64等)
ndarray.itemsize:每個元素占幾個字節(jié)
例子:
>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<type 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<type 'numpy.ndarray'>
二.創(chuàng)建數(shù)組:
使用array函數(shù)講tuple和list轉(zhuǎn)為array:
>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
多維數(shù)組:
>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]])
生成數(shù)組的同時指定類型:
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j, 2.+0.j],
[ 3.+0.j, 4.+0.j]])
生成數(shù)組并賦為特殊值:
ones:全1
zeros:全0
empty:隨機數(shù),取決于內(nèi)存情況
>>> np.zeros( (3,4) )
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified
array([[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]],
[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) ) # uninitialized, output may vary
array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260],
[ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
生成均勻分布的array:
arange(最小值,最大值,步長)(左閉右開)
linspace(最小值,最大值,元素數(shù)量)
>>> np.arange( 10, 30, 5 ) array([10, 15, 20, 25]) >>> np.arange( 0, 2, 0.3 ) # it accepts float arguments array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8]) >>> np.linspace( 0, 2, 9 ) # 9 numbers from 0 to 2 array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ]) >>> x = np.linspace( 0, 2*pi, 100 ) # useful to evaluate function at lots of points
三.基本運算:
整個array按順序參與運算:
>>> a = np.array( [20,30,40,50] ) >>> b = np.arange( 4 ) >>> b array([0, 1, 2, 3]) >>> c = a-b >>> c array([20, 29, 38, 47]) >>> b**2 array([0, 1, 4, 9]) >>> 10*np.sin(a) array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854]) >>> a<35 array([ True, True, False, False], dtype=bool)
兩個二維使用*符號仍然是按位置一對一相乘,如果想表示矩陣乘法,使用dot:
>>> A = np.array( [[1,1],
... [0,1]] )
>>> B = np.array( [[2,0],
... [3,4]] )
>>> A*B # elementwise product
array([[2, 0],
[0, 4]])
>>> A.dot(B) # matrix product
array([[5, 4],
[3, 4]])
>>> np.dot(A, B) # another matrix product
array([[5, 4],
[3, 4]])
內(nèi)置函數(shù)(min,max,sum),同時可以使用axis指定對哪一維進行操作:
>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>>
>>> b.sum(axis=0) # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1) # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1) # cumulative sum along each row
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
Numpy同時提供很多全局函數(shù)
>>> B = np.arange(3) >>> B array([0, 1, 2]) >>> np.exp(B) array([ 1. , 2.71828183, 7.3890561 ]) >>> np.sqrt(B) array([ 0. , 1. , 1.41421356]) >>> C = np.array([2., -1., 4.]) >>> np.add(B, C) array([ 2., 0., 6.])
四.尋址,索引和遍歷:
一維數(shù)組的遍歷語法和python list類似:
>>> a = np.arange(10)**3 >>> a array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]) >>> a[2] 8 >>> a[2:5] array([ 8, 27, 64]) >>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000 >>> a array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729]) >>> a[ : :-1] # reversed a array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000]) >>> for i in a: ... print(i**(1/3.)) ... nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0
多維數(shù)組的訪問通過給每一維指定一個索引,順序是先高維再低維:
>>> def f(x,y):
... return 10*x+y
...
>>> b = np.fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1] # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1] # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ] # each column in the second and third row of b
array([[10, 11, 12, 13],
[20, 21, 22, 23]])
When fewer indices are provided than the number of axes, the missing indices are considered complete slices:
>>>
>>> b[-1] # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])
…符號表示將所有未指定索引的維度均賦為 : ,:在python中表示該維所有元素:
>>> c = np.array( [[[ 0, 1, 2], # a 3D array (two stacked 2D arrays)
... [ 10, 12, 13]],
... [[100,101,102],
... [110,112,113]]])
>>> c.shape
(2, 2, 3)
>>> c[1,...] # same as c[1,:,:] or c[1]
array([[100, 101, 102],
[110, 112, 113]])
>>> c[...,2] # same as c[:,:,2]
array([[ 2, 13],
[102, 113]])
遍歷:
如果只想遍歷整個array可以直接使用:
>>> for row in b: ... print(row) ... [0 1 2 3] [10 11 12 13] [20 21 22 23] [30 31 32 33] [40 41 42 43]
但是如果要對每個元素進行操作,就要使用flat屬性,這是一個遍歷整個數(shù)組的迭代器
>>> for element in b.flat: ... print(element) ...
總結(jié)
以上所述是小編給大家介紹的Python Numpy 數(shù)組的初始化和基本操作,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會及時回復(fù)大家的。在此也非常感謝大家對腳本之家網(wǎng)站的支持!
相關(guān)文章
python神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)數(shù)據(jù)增強及預(yù)處理示例詳解
這篇文章主要為大家介紹了python神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)數(shù)據(jù)增強及預(yù)處理示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2022-05-05
Python實現(xiàn)跨平臺表格數(shù)據(jù)分頁打印預(yù)覽處理詳解
這篇文章主要為大家詳細介紹了如何使用PySide6/PyQt6實現(xiàn)Python跨平臺表格數(shù)據(jù)分頁打印預(yù)覽處理,感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下2025-03-03
Python利用海龜畫圖turtle庫做一個籃球比賽計時畫面示例代碼
這篇文章主要介紹了Python利用海龜畫圖turtle庫做一個籃球比賽計時畫面的相關(guān)資料,文中通過代碼介紹的非常詳細,代碼實現(xiàn)了一個基本的計時器功能,需要的朋友可以參考下2024-12-12
Django Serializer HiddenField隱藏字段實例
這篇文章主要介紹了Django Serializer HiddenField隱藏字段實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-03-03
通過python爬蟲mechanize庫爬取本機ip地址的方法
python中的mechanize算是一個比較古老的庫了,在python2的時代中,使用的多一些,在python3以后就很少使用了,現(xiàn)在已經(jīng)是2202年了,可能很多人都沒聽說過mechanize,這不要緊,我們先來簡單的講解一下,如何使用mechanize,感興趣的朋友一起看看吧2022-08-08

