Python用 KNN 進行驗證碼識別的實現(xiàn)方法
前言
之前做了一個校園交友的APP,其中一個邏輯是通過用戶的教務(wù)系統(tǒng)來確認用戶是一名在校大學(xué)生,基本的想法是通過用戶的賬號和密碼,用爬蟲的方法來確認信息,但是許多教務(wù)系統(tǒng)都有驗證碼,當時是通過本地服務(wù)器去下載驗證碼,然后分發(fā)給客戶端,然后讓用戶自己填寫驗證碼,與賬號密碼一并提交給服務(wù)器,然后服務(wù)器再去模擬登錄教務(wù)系統(tǒng)以確認用戶能否登錄該教務(wù)系統(tǒng)。驗證碼無疑讓我們想使得用戶快速認證的想法破滅了,但是當時也沒辦法,最近看了一些機器學(xué)習(xí)的內(nèi)容,覺得對于大多數(shù)學(xué)校的那些極簡單的驗證碼應(yīng)該是可以用KNN這種方法來破解的,于是整理了一下思緒,擼起袖子做起來!
分析
我們學(xué)校的驗證碼是這樣的:
,其實就是簡單地把字符進行旋轉(zhuǎn)然后加上一些微弱的噪點形成的。我們要識別,就得逆行之,具體思路就是,首先二值化去掉噪點,然后把單個字符分割出來,最后旋轉(zhuǎn)至標準方向,然后從這些處理好的圖片中選出模板,最后每次新來一張驗證碼就按相同方式處理,然后和這些模板進行比較,選擇判別距離最近的一個模板作為其判斷結(jié)果(亦即KNN的思想,本文取K=1)。接下來按步驟進行說明。
獲得驗證碼
首先得有大量的驗證碼,我們通過爬蟲來實現(xiàn),代碼如下
#-*- coding:UTF-8 -*-
import urllib,urllib2,cookielib,string,Image
def getchk(number):
#創(chuàng)建cookie對象
cookie = cookielib.LWPCookieJar()
cookieSupport= urllib2.HTTPCookieProcessor(cookie)
opener = urllib2.build_opener(cookieSupport, urllib2.HTTPHandler)
urllib2.install_opener(opener)
#首次與教務(wù)系統(tǒng)鏈接獲得cookie#
#偽裝browser
headers = {
'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Encoding':'gzip,deflate',
'Accept-Language':'zh-CN,zh;q=0.8',
'User-Agent':'Mozilla/5.0 (Windows NT 6.2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36'
}
req0 = urllib2.Request(
url ='http://mis.teach.ustc.edu.cn',
headers = headers #請求頭
)
# 捕捉http錯誤
try :
result0 = urllib2.urlopen(req0)
except urllib2.HTTPError,e:
print e.code
#提取cookie
getcookie = ['',]
for item in cookie:
getcookie.append(item.name)
getcookie.append("=")
getcookie.append(item.value)
getcookie = "".join(getcookie)
#修改headers
headers["Origin"] = "http://mis.teach.ustc.edu.cn"
headers["Referer"] = "http://mis.teach.ustc.edu.cn/userinit.do"
headers["Content-Type"] = "application/x-www-form-urlencoded"
headers["Cookie"] = getcookie
for i in range(number):
req = urllib2.Request(
url ="http://mis.teach.ustc.edu.cn/randomImage.do?date='1469451446894'",
headers = headers #請求頭
)
response = urllib2.urlopen(req)
status = response.getcode()
picData = response.read()
if status == 200:
localPic = open("./source/"+str(i)+".jpg", "wb")
localPic.write(picData)
localPic.close()
else:
print "failed to get Check Code "
if __name__ == '__main__':
getchk(500)
這里下載了500張驗證碼到source目錄下面。如圖:

二值化
matlab豐富的圖像處理函數(shù)能給我們省下很多時間,,我們遍歷source文件夾,對每一張驗證碼圖片進行二值化處理,把處理過的圖片存入bw目錄下。代碼如下
mydir='./source/'; bw = './bw/'; if mydir(end)~='\' mydir=[mydir,'\']; end DIRS=dir([mydir,'*.jpg']); %擴展名 n=length(DIRS); for i=1:n if ~DIRS(i).isdir img = imread(strcat(mydir,DIRS(i).name )); img = rgb2gray(img);%灰度化 img = im2bw(img);%0-1二值化 name = strcat(bw,DIRS(i).name) imwrite(img,name); end end
處理結(jié)果如圖:

分割
mydir='./bw/'; letter = './letter/'; if mydir(end)~='\' mydir=[mydir,'\']; end DIRS=dir([mydir,'*.jpg']); %擴展名 n=length(DIRS); for i=1:n if ~DIRS(i).isdir img = imread(strcat(mydir,DIRS(i).name )); img = im2bw(img);%二值化 img = 1-img;%顏色反轉(zhuǎn)讓字符成為聯(lián)通域,方便去除噪點 for ii = 0:3 region = [ii*20+1,1,19,20];%把一張驗證碼分成四個20*20大小的字符圖片 subimg = imcrop(img,region); imlabel = bwlabel(subimg); % imshow(imlabel); if max(max(imlabel))>1 % 說明有噪點,要去除 % max(max(imlabel)) % imshow(subimg); stats = regionprops(imlabel,'Area'); area = cat(1,stats.Area); maxindex = find(area == max(area)); area(maxindex) = 0; secondindex = find(area == max(area)); imindex = ismember(imlabel,secondindex); subimg(imindex==1)=0;%去掉第二大連通域,噪點不可能比字符大,所以第二大的就是噪點 end name = strcat(letter,DIRS(i).name(1:length(DIRS(i).name)-4),'_',num2str(ii),'.jpg') imwrite(subimg,name); end end end
處理結(jié)果如圖:

旋轉(zhuǎn)
接下來進行旋轉(zhuǎn),哪找一個什么標準呢?據(jù)觀察,這些字符旋轉(zhuǎn)不超過60度,那么在正負60度之間,統(tǒng)一旋轉(zhuǎn)至字符寬度最小就行了。代碼如下
if mydir(end)~='\' mydir=[mydir,'\']; end DIRS=dir([mydir,'*.jpg']); %擴展名 n=length(DIRS); for i=1:n if ~DIRS(i).isdir img = imread(strcat(mydir,DIRS(i).name )); img = im2bw(img); minwidth = 20; for angle = -60:60 imgr=imrotate(img,angle,'bilinear','crop');%crop 避免圖像大小變化 imlabel = bwlabel(imgr); stats = regionprops(imlabel,'Area'); area = cat(1,stats.Area); maxindex = find(area == max(area)); imindex = ismember(imlabel,maxindex);%最大連通域為1 [y,x] = find(imindex==1); width = max(x)-min(x)+1; if width<minwidth minwidth = width; imgrr = imgr; end end name = strcat(rotate,DIRS(i).name) imwrite(imgrr,name); end end
處理結(jié)果如圖,一共2000個字符的圖片存在rotate文件夾中

模板選取
現(xiàn)在從rotate文件夾中選取一套模板,涵蓋每一個字符,一個字符可以選取多個圖片,因為即使有前面的諸多處理也不能保證一個字符的最終呈現(xiàn)形式只有一種,多選幾個才能保證覆蓋率。把選出來的模板圖片存入samples文件夾下,這個過程很耗時耗力。可以找同學(xué)幫忙~,如圖

測試
測試代碼如下:首先對測試驗證碼進行上述操作,然后和選出來的模板進行比較,采用差分值最小的模板作為測試樣本的字符選擇,代碼如下
% 具有差分最小值的圖作為答案
mydir='./test/';
samples = './samples/';
if mydir(end)~='\'
mydir=[mydir,'\'];
end
if samples(end)~='\'
samples=[samples,'\'];
end
DIRS=dir([mydir,'*.jpg']); %擴展?
DIRS1=dir([samples,'*.jpg']); %擴展名
n=length(DIRS);%驗證碼總圖數(shù)
singleerror = 0;%單個錯誤
uniterror = 0;%一張驗證碼錯誤個數(shù)
for i=1:n
if ~DIRS(i).isdir
realcodes = DIRS(i).name(1:4);
fprintf('驗證碼實際字符:%s\n',realcodes);
img = imread(strcat(mydir,DIRS(i).name ));
img = rgb2gray(img);
img = im2bw(img);
img = 1-img;%顏色反轉(zhuǎn)讓字符成為聯(lián)通域
subimgs = [];
for ii = 0:3
region = [ii*20+1,1,19,20];%奇怪,為什么這樣才能均分?
subimg = imcrop(img,region);
imlabel = bwlabel(subimg);
if max(max(imlabel))>1 % 說明有雜點
stats = regionprops(imlabel,'Area');
area = cat(1,stats.Area);
maxindex = find(area == max(area));
area(maxindex) = 0;
secondindex = find(area == max(area));
imindex = ismember(imlabel,secondindex);
subimg(imindex==1)=0;%去掉第二大連通域
end
subimgs = [subimgs;subimg];
end
codes = [];
for ii = 0:3
region = [ii*20+1,1,19,20];
subimg = imcrop(img,region);
minwidth = 20;
for angle = -60:60
imgr=imrotate(subimg,angle,'bilinear','crop');%crop 避免圖像大小變化
imlabel = bwlabel(imgr);
stats = regionprops(imlabel,'Area');
area = cat(1,stats.Area);
maxindex = find(area == max(area));
imindex = ismember(imlabel,maxindex);%最大連通域為1
[y,x] = find(imindex==1);
width = max(x)-min(x)+1;
if width<minwidth
minwidth = width;
imgrr = imgr;
end
end
mindiffv = 1000000;
for jj = 1:length(DIRS1)
imgsample = imread(strcat(samples,DIRS1(jj).name ));
imgsample = im2bw(imgsample);
diffv = abs(imgsample-imgrr);
alldiffv = sum(sum(diffv));
if alldiffv<mindiffv
mindiffv = alldiffv;
code = DIRS1(jj).name;
code = code(1);
end
end
codes = [codes,code];
end
fprintf('驗證碼測試字符:%s\n',codes);
num = codes-realcodes;
num = length(find(num~=0));
singleerror = singleerror + num;
if num>0
uniterror = uniterror +1;
end
fprintf('錯誤個數(shù):%d\n',num);
end
end
fprintf('\n-----結(jié)果統(tǒng)計如下-----\n\n');
fprintf('測試驗證碼的字符數(shù)量:%d\n',n*4);
fprintf('測試驗證碼的字符錯誤數(shù)量:%d\n',singleerror);
fprintf('單個字符識別正確率:%.2f%%\n',(1-singleerror/(n*4))*100);
fprintf('測試驗證碼圖的數(shù)量:%d\n',n);
fprintf('測試驗證碼圖的錯誤數(shù)量:%d\n',uniterror);
fprintf('填對驗證碼的概率:%.2f%%\n',(1-uniterror/n)*100);
結(jié)果:
驗證碼實際字符:2B4E
驗證碼測試字符:2B4F
錯誤個數(shù):1
驗證碼實際字符:4572
驗證碼測試字符:4572
錯誤個數(shù):0
驗證碼實際字符:52CY
驗證碼測試字符:52LY
錯誤個數(shù):1
驗證碼實際字符:83QG
驗證碼測試字符:85QG
錯誤個數(shù):1
驗證碼實際字符:9992
驗證碼測試字符:9992
錯誤個數(shù):0
驗證碼實際字符:A7Y7
驗證碼測試字符:A7Y7
錯誤個數(shù):0
驗證碼實際字符:D993
驗證碼測試字符:D995
錯誤個數(shù):1
驗證碼實際字符:F549
驗證碼測試字符:F5A9
錯誤個數(shù):1
驗證碼實際字符:FMC6
驗證碼測試字符:FMLF
錯誤個數(shù):2
驗證碼實際字符:R4N4
驗證碼測試字符:R4N4
錯誤個數(shù):0
-----結(jié)果統(tǒng)計如下-----
測試驗證碼的字符數(shù)量:40
測試驗證碼的字符錯誤數(shù)量:7
單個字符識別正確率:82.50%
測試驗證碼圖的數(shù)量:10
測試驗證碼圖的錯誤數(shù)量:6
填對驗證碼的概率:40.00%
可見單個字符準確率是比較高的的了,但是綜合準確率還是不行,觀察結(jié)果至,錯誤的字符就是那些易混淆字符,比如E和F,C和L,5和3,4和A等,所以我們能做的事就是增加模板中的樣本數(shù)量,以期盡量減少混淆。
增加了幾十個樣本過后再次試驗,結(jié)果:
驗證碼實際字符:2B4E
驗證碼測試字符:2B4F
錯誤個數(shù):1
驗證碼實際字符:4572
驗證碼測試字符:4572
錯誤個數(shù):0
驗證碼實際字符:52CY
驗證碼測試字符:52LY
錯誤個數(shù):1
驗證碼實際字符:83QG
驗證碼測試字符:83QG
錯誤個數(shù):0
驗證碼實際字符:9992
驗證碼測試字符:9992
錯誤個數(shù):0
驗證碼實際字符:A7Y7
驗證碼測試字符:A7Y7
錯誤個數(shù):0
驗證碼實際字符:D993
驗證碼測試字符:D993
錯誤個數(shù):0
驗證碼實際字符:F549
驗證碼測試字符:F5A9
錯誤個數(shù):1
驗證碼實際字符:FMC6
驗證碼測試字符:FMLF
錯誤個數(shù):2
驗證碼實際字符:R4N4
驗證碼測試字符:R4N4
錯誤個數(shù):0
-----結(jié)果統(tǒng)計如下-----
測試驗證碼的字符數(shù)量:40
測試驗證碼的字符錯誤數(shù)量:5
單個字符識別正確率:87.50%
測試驗證碼圖的數(shù)量:10
測試驗證碼圖的錯誤數(shù)量:4
填對驗證碼的概率:60.00%
可見無論是單個字符識別正確率還是整個驗證碼正確的概率都有了提升。能夠預(yù)見:隨著模板數(shù)量的增多,正確率會不斷地提高。
總結(jié)
這種方法的可擴展性很弱,而且只適用于簡單的驗證碼,12306那種根本就別提了。
相關(guān)文章
關(guān)于tensorflow的幾種參數(shù)初始化方法小結(jié)
今天小編就為大家分享一篇關(guān)于tensorflow的幾種參數(shù)初始化方法小結(jié),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-01-01
基于python實現(xiàn)FTP文件上傳與下載操作(ftp&sftp協(xié)議)
這篇文章主要介紹了基于python實現(xiàn)FTP文件上傳與下載操作(ftp&sftp協(xié)議),本文通過實例代碼給大家介紹的非常詳細,對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-04-04
Python圖像處理利Pillow庫使用實戰(zhàn)指南
Pillow庫是Python編程中用于圖像處理的重要工具,作為Python?Imaging?Library(PIL)的一個分支,Pillow庫提供了豐富的功能和易用的API,用于處理圖像的各種操作2023-12-12
pydantic?resolve解決嵌套數(shù)據(jù)結(jié)構(gòu)生成痛點分析
這篇文章主要為大家介紹了pydantic?resolve解決嵌套數(shù)據(jù)結(jié)構(gòu)生成痛點分析,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2023-04-04
使用python爬蟲實現(xiàn)抓取動態(tài)加載數(shù)據(jù)
這篇文章主要給大家介紹了如何用python爬蟲抓取豆瓣電影“分類排行榜”中的電影數(shù)據(jù),比如輸入“犯罪”則會輸出所有犯罪影片的電影名稱、評分,文中通過代碼示例和圖文介紹的非常詳細,需要的朋友可以參考下2024-01-01

