Python使用Tkinter實(shí)現(xiàn)機(jī)器人走迷宮
這本是課程的一個(gè)作業(yè)研究搜索算法,當(dāng)時(shí)研究了一下Tkinter,然后寫(xiě)了個(gè)很簡(jiǎn)單的機(jī)器人走迷宮的界面,并且使用了各種搜索算法來(lái)進(jìn)行搜索,如下圖:

使用A*尋找最優(yōu)路徑:

由于時(shí)間關(guān)系,不分析了,我自己貼代碼吧。希望對(duì)一些也要用Tkinter的人有幫助。
from Tkinter import *
from random import *
import time
import numpy as np
import util
class Directions:
NORTH = 'North'
SOUTH = 'South'
EAST = 'East'
WEST = 'West'
# Detect elements in the map
window = Tk()
window.title('CityBusPlanner')
window.resizable(0,0)
width = 25
(x, y) = (22, 22)
totalsteps = 0
buidings = [(0, 0), (1, 0), (2, 0), (3, 0), (7, 0), (8, 0), (11, 0), (12, 0), (13, 0),
(17, 0), (18, 0), (21, 0), (21, 1), (2, 2), (5, 2), (8, 2), (9, 2), (12, 2),
(14, 2), (15, 2), (16, 2), (17, 2), (21, 2), (2, 3), (4, 3), (5, 3), (7, 3),
(8, 3), (11, 3), (17, 3), (18, 3), (19, 3), (2, 4), (4, 4), (5, 4), (8, 4),
(9, 4), (14, 4), (15, 4),(17, 4), (18, 4), (19, 4), (0, 6), (2, 6), (4, 6),
(7, 6), (8, 6), (11, 6), (12, 6), (14, 6), (15, 6),(16, 6), (18, 6), (19, 6),
(2, 7), (5, 7), (21, 7), (0, 8), (2, 8), (11, 8), (14, 8), (15, 8), (17, 8),
(18, 8), (21, 8), (4, 9), (5, 9), (7, 9), (9, 9), (11, 9), (14, 9), (21, 9),
(2, 10), (7, 10), (14, 10), (17, 10), (19, 10), (0, 11), (2, 11), (4, 11),
(5, 11), (7, 11), (8, 11), (9, 11), (11, 11), (12, 11), (14, 11), (15, 11),
(16, 11), (17, 11), (18, 11), (19, 11), (0, 13), (2, 13), (3, 13), (5, 13),
(7, 13), (8, 13), (9, 13), (14, 13), (17, 13), (18, 13), (21, 13), (2, 14),
(3, 14), (5, 14), (7, 14),(9, 14), (12, 14), (14, 14), (15, 14), (17, 14),
(18, 14), (21, 14), (2, 15), (3, 15), (5, 15), (7, 15), (9, 15), (12, 15),
(15, 15), (19, 15), (21, 15), (0, 16), (21, 16), (0, 17), (3, 17), (5, 17),
(7, 17),(9, 17), (11, 17), (14, 17), (15, 17), (17, 17), (18, 17), (21, 17),
(2, 18), (3, 18), (5, 18), (7, 18),(9, 18), (11, 18), (14, 18), (17, 18),
(18, 18), (3, 19), (5, 19), (7, 19), (9, 19), (11, 19), (12, 19), (14, 19),
(17, 19), (18, 19), (0, 21), (1, 21), (2, 21), (5, 21), (6, 21), (9, 21),
(10, 21), (11, 21), (12, 21), (15, 21), (16, 21), (18, 21), (19, 21), (21, 21)]
walls = [(10, 0), (0, 12), (21, 12), (14, 21)]
park = [(14, 0), (15, 0), (16, 0)]
robotPos = (21, 12)
view = Canvas(window, width=x * width, height=y * width)
view.grid(row=0, column=0)
searchMapButton = Button(window,text = 'search')
searchMapButton.grid(row = 0,column = 1)
robotView = Canvas(window,width=x * width, height=y * width)
robotView.grid(row = 0,column = 2)
def formatColor(r, g, b):
return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255))
def cityMap():
global width, x, y, buidings,walls,park,robot
for i in range(x):
for j in range(y):
view.create_rectangle(
i * width, j * width, (i + 1) * width, (j + 1) * width, fill='white', outline='gray', width=1)
for (i, j) in buidings:
view.create_rectangle(
i * width, j * width, (i + 1) * width, (j + 1) * width, fill='black', outline='gray', width=1)
for (i,j) in walls:
view.create_rectangle(
i * width, j * width, (i + 1) * width, (j + 1) * width, fill='blue', outline='gray', width=1)
for (i,j) in park:
view.create_rectangle(
i * width, j * width, (i + 1) * width, (j + 1) * width, fill='red', outline='gray', width=1)
def robotCityMap():
global width, x, y, buidings,walls,park,robot,robotPos
for i in range(x):
for j in range(y):
robotView.create_rectangle(
i * width, j * width, (i + 1) * width, (j + 1) * width, fill='black', width=1)
robotView.create_rectangle(
robotPos[0] * width, robotPos[1] * width, (robotPos[0] + 1) * width, (robotPos[1] + 1) * width, fill='white', outline='gray', width=1)
# Create City Map
cityMap()
# Create Robot View
robotCityMap()
# Create a robot
robot = view.create_rectangle(robotPos[0] * width + width * 2 / 10, robotPos[1] * width + width * 2 / 10,
robotPos[0] * width + width * 8 / 10, robotPos[1] * width + width * 8 / 10, fill="orange", width=1, tag="robot")
robotSelf = robotView.create_rectangle(robotPos[0] * width + width * 2 / 10, robotPos[1] * width + width * 2 / 10,
robotPos[0] * width + width * 8 / 10, robotPos[1] * width + width * 8 / 10, fill="orange", width=1, tag="robot")
visited = [robotPos]
def move(dx,dy):
global robot,x,y,robotPos,robotSelf,view
global totalsteps
totalsteps = totalsteps + 1
newX = robotPos[0] + dx
newY = robotPos[1] + dy
if (not isEdge(newX, newY)) and (not isBlock(newX, newY)):
#print "move %d" % totalsteps
view.coords(robot, (newX) * width + width * 2 / 10, (newY) * width + width * 2 / 10,
(newX) * width + width * 8 / 10, (newY) * width + width * 8 / 10)
robotView.coords(robotSelf, (newX) * width + width * 2 / 10, (newY) * width + width * 2 / 10,
(newX) * width + width * 8 / 10, (newY) * width + width * 8 / 10)
robotPos = (newX, newY)
if robotPos not in visited:
visited.append(robotPos)
visitedPanel = robotView.create_rectangle(
robotPos[0] * width, robotPos[1] * width, (robotPos[0] + 1) * width, (robotPos[1] + 1) * width, fill='white', outline='gray', width=1)
robotView.tag_lower(visitedPanel,robotSelf)
else:
print "move error"
def callUp(event):
move(0,-1)
def callDown(event):
move(0, 1)
def callLeft(event):
move(-1, 0)
def callRight(event):
move(1, 0)
def isBlock(newX,newY):
global buidings,x,y
for (i,j) in buidings:
if (i == newX) and (j == newY):
return True
return False
def isEdge(newX,newY):
global x,y
if newX >= x or newY >= y or newX < 0 or newY < 0 :
return True
return False
def getSuccessors(robotPos):
n = Directions.NORTH
w = Directions.WEST
s = Directions.SOUTH
e = Directions.EAST
successors = []
posX = robotPos[0]
posY = robotPos[1]
if not isBlock(posX - 1, posY) and not isEdge(posX - 1,posY):
successors.append(w)
if not isBlock(posX, posY + 1) and not isEdge(posX,posY + 1):
successors.append(s)
if not isBlock(posX + 1, posY) and not isEdge(posX + 1,posY):
successors.append(e)
if not isBlock(posX, posY -1) and not isEdge(posX,posY - 1):
successors.append(n)
return successors
def getNewPostion(position,action):
posX = position[0]
posY = position[1]
n = Directions.NORTH
w = Directions.WEST
s = Directions.SOUTH
e = Directions.EAST
if action == n:
return (posX,posY - 1)
elif action == w:
return (posX - 1,posY)
elif action == s:
return (posX,posY + 1)
elif action == e:
return (posX + 1,posY)
delay = False
def runAction(actions):
global delay
n = Directions.NORTH
w = Directions.WEST
s = Directions.SOUTH
e = Directions.EAST
for i in actions:
if delay:
time.sleep(0.05)
if i == n:
#print "North"
move(0, -1)
elif i == w:
#print "West"
move(-1, 0)
elif i == s:
#print "South"
move(0, 1)
elif i == e:
#sprint "East"
move(1, 0)
view.update()
def searchMapTest(event):
global robotPos
actions = []
position = robotPos
for i in range(100):
successors = getSuccessors(position)
successor = successors[randint(0, len(successors) - 1)]
actions.append(successor)
position = getNewPostion(position, successor)
print actions
runAction(actions)
def reverseSuccessor(successor):
n = Directions.NORTH
w = Directions.WEST
s = Directions.SOUTH
e = Directions.EAST
if successor == n:
return s
elif successor == w:
return e
elif successor == s:
return n
elif successor == e:
return w
roads = set()
detectedBuildings = {}
blockColors = {}
blockIndex = 0
def updateBuildings(detectedBuildings):
global robotView,width
for block,buildings in detectedBuildings.items():
color = blockColors[block]
for building in buildings:
robotView.create_rectangle(
building[0] * width, building[1] * width, (building[0] + 1) * width, (building[1] + 1) * width, fill=color, outline=color, width=1)
def addBuilding(position):
global blockIndex,detectedBuildings
isAdd = False
addBlock = ''
for block,buildings in detectedBuildings.items():
for building in buildings:
if building == position:
return
if util.manhattanDistance(position, building) == 1:
if not isAdd:
buildings.add(position)
isAdd = True
addBlock = block
break
else:
#merge two block
for building in detectedBuildings[block]:
detectedBuildings[addBlock].add(building)
detectedBuildings.pop(block)
if not isAdd:
newBlock = set([position])
blockIndex = blockIndex + 1
detectedBuildings['Block %d' % blockIndex] = newBlock
color = formatColor(random(), random(), random())
blockColors['Block %d' % blockIndex] = color
updateBuildings(detectedBuildings)
def addRoad(position):
global robotView,width,robotSelf
visitedPanel = robotView.create_rectangle(
position[0] * width, position[1] * width, (position[0] + 1) * width, (position[1] + 1) * width, fill='white', outline='gray', width=1)
robotView.tag_lower(visitedPanel,robotSelf)
def showPath(positionA,positionB,path):
global robotView,width,view
view.create_oval(positionA[0] * width + width * 3 / 10, positionA[1] * width + width * 3 / 10,
positionA[0] * width + width * 7 / 10, positionA[1] * width + width * 7 / 10, fill='yellow', width=1)
nextPosition = positionA
for action in path:
nextPosition = getNewPostion(nextPosition, action)
view.create_oval(nextPosition[0] * width + width * 4 / 10, nextPosition[1] * width + width * 4 / 10,
nextPosition[0] * width + width * 6 / 10, nextPosition[1] * width + width * 6 / 10, fill='yellow', width=1)
view.create_oval(positionB[0] * width + width * 3 / 10, positionB[1] * width + width * 3 / 10,
positionB[0] * width + width * 7 / 10, positionB[1] * width + width * 7 / 10, fill='yellow', width=1)
hasDetected = set()
def detectLocation(position):
if position not in hasDetected:
hasDetected.add(position)
if isBlock(position[0],position[1]):
addBuilding(position)
elif not isEdge(position[0],position[1]):
addRoad(position)
def detect(position):
posX = position[0]
posY = position[1]
detectLocation((posX,posY + 1))
detectLocation((posX,posY - 1))
detectLocation((posX + 1,posY))
detectLocation((posX - 1,posY))
def heuristic(positionA,positionB):
return util.manhattanDistance(positionA,positionB)
def AstarSearch(positionA,positionB):
"Step 1: define closed: a set"
closed = set()
"Step 2: define fringe: a PriorityQueue "
fringe = util.PriorityQueue()
"Step 3: insert initial node to fringe"
"Construct node to be a tuple (location,actions)"
initialNode = (positionA,[])
initCost = 0 + heuristic(initialNode[0],positionB)
fringe.push(initialNode,initCost)
"Step 4: Loop to do search"
while not fringe.isEmpty():
node = fringe.pop()
if node[0] == positionB:
return node[1]
if node[0] not in closed:
closed.add(node[0])
for successor in getSuccessors(node[0]):
actions = list(node[1])
actions.append(successor)
newPosition = getNewPostion(node[0], successor)
childNode = (newPosition,actions)
cost = len(actions) + heuristic(childNode[0],positionB)
fringe.push(childNode,cost)
return []
def AstarSearchBetweenbuildings(building1,building2):
"Step 1: define closed: a set"
closed = set()
"Step 2: define fringe: a PriorityQueue "
fringe = util.PriorityQueue()
"Step 3: insert initial node to fringe"
"Construct node to be a tuple (location,actions)"
initialNode = (building1,[])
initCost = 0 + heuristic(initialNode[0],building2)
fringe.push(initialNode,initCost)
"Step 4: Loop to do search"
while not fringe.isEmpty():
node = fringe.pop()
if util.manhattanDistance(node[0],building2) == 1:
return node[1]
if node[0] not in closed:
closed.add(node[0])
for successor in getSuccessors(node[0]):
actions = list(node[1])
actions.append(successor)
newPosition = getNewPostion(node[0], successor)
childNode = (newPosition,actions)
cost = len(actions) + heuristic(childNode[0],building2)
fringe.push(childNode,cost)
return []
def calculatePositions(buildingA,path):
positions = set()
positions.add(buildingA)
nextPosition = buildingA
for action in path:
nextPosition = getNewPostion(nextPosition, action)
positions.add(nextPosition)
return positions
def showRoad(fullRoad):
global view,width
for road in fullRoad:
view.create_oval(road[0] * width + width * 4 / 10, road[1] * width + width * 4 / 10,
road[0] * width + width * 6 / 10, road[1] * width + width * 6 / 10, fill='yellow', width=1)
view.update()
def search(node):
successors = getSuccessors(node[0])
detect(node[0])
for successor in successors:
nextPosition = getNewPostion(node[0], successor)
if nextPosition not in roads:
runAction([successor]) # to the next node
roads.add(nextPosition)
search((nextPosition,[successor],[reverseSuccessor(successor)]))
runAction(node[2]) #back to top node
def searchConsiderTopVisit(node,topWillVisit):
successors = getSuccessors(node[0])
detect(node[0])
newTopWillVisit = set(topWillVisit)
for successor in successors:
nextPosition = getNewPostion(node[0], successor)
newTopWillVisit.add(nextPosition)
for successor in successors:
nextPosition = getNewPostion(node[0], successor)
if nextPosition not in roads and nextPosition not in topWillVisit:
runAction([successor]) # to the next node
roads.add(nextPosition)
newTopWillVisit.remove(nextPosition)
searchConsiderTopVisit((nextPosition,[successor],[reverseSuccessor(successor)]),newTopWillVisit)
runAction(node[2]) #back to top node
def searchShortestPathBetweenBlocks(block1,block2):
shortestPath = []
buildingA = (0,0)
buildingB = (0,0)
for building1 in block1:
for building2 in block2:
path = AstarSearchBetweenbuildings(building1, building2)
if len(shortestPath) == 0:
shortestPath = path
buildingA = building1
buildingB = building2
elif len(path) < len(shortestPath):
shortestPath = path
buildingA = building1
buildingB = building2
return (buildingA,buildingB,shortestPath)
def addBuildingToBlocks(linkedBlock,buildingA):
global detectedBuildings
newLinkedBlock = linkedBlock.copy()
for block,buildings in detectedBuildings.items():
for building in buildings:
if util.manhattanDistance(buildingA, building) == 1:
newLinkedBlock[block] = buildings
break
return newLinkedBlock
def bfsSearchNextBlock(initBuilding,linkedBlock):
global detectedBuildings
closed = set()
fringe = util.Queue()
initNode = (initBuilding,[])
fringe.push(initNode)
while not fringe.isEmpty():
node = fringe.pop()
newLinkedBlock = addBuildingToBlocks(linkedBlock,node[0])
if len(newLinkedBlock) == len(detectedBuildings):
return node[1]
if len(newLinkedBlock) > len(linkedBlock): # find a new block
actions = list(node[1])
'''
if len(node[1]) > 0:
lastAction = node[1][len(node[1]) - 1]
for successor in getSuccessors(node[0]):
if successor == lastAction:
nextPosition = getNewPostion(node[0], successor)
actions.append(successor)
return actions + bfsSearchNextBlock(nextPosition, newLinkedBlock)
'''
return node[1] + bfsSearchNextBlock(node[0], newLinkedBlock)
if node[0] not in closed:
closed.add(node[0])
for successor in getSuccessors(node[0]):
actions = list(node[1])
actions.append(successor)
nextPosition = getNewPostion(node[0], successor)
childNode = (nextPosition,actions)
fringe.push(childNode)
return []
def isGoal(node):
global detectedBuildings,robotPos
linkedBlock = {}
positions = calculatePositions(robotPos, node[1])
for position in positions:
for block,buildings in detectedBuildings.items():
for building in buildings:
if util.manhattanDistance(position, building) == 1:
linkedBlock[block] = buildings
print len(linkedBlock)
if len(linkedBlock) == 17:
return True
else:
return False
def roadHeuristic(road):
return 0
def AstarSearchRoad():
global robotPos,detectedBuildings
"Step 1: define closed: a set"
closed = set()
"Step 2: define fringe: a PriorityQueue "
fringe = util.PriorityQueue()
"Step 3: insert initial node to fringe"
"Construct node to be a tuple (location,actions)"
initRoad = (robotPos,[])
initCost = 0 + roadHeuristic(initRoad)
fringe.push(initRoad,initCost)
"Step 4: Loop to do search"
while not fringe.isEmpty():
node = fringe.pop()
if isGoal(node):
print len(closed)
return node[1]
if node[0] not in closed:
closed.add(node[0])
for successor in getSuccessors(node[0]):
actions = list(node[1])
actions.append(successor)
newPosition = getNewPostion(node[0], successor)
childNode = (newPosition,actions)
cost = len(actions) + roadHeuristic(childNode)
fringe.push(childNode,cost)
return []
def searchRoad(building):
global detectedBuildings,robotPos
linkedBlock = {}
initBuilding = building
return bfsSearchNextBlock(initBuilding,linkedBlock)
def searchShortestRoad():
shortestRoad = []
shortestPositions = set()
for block,buildings in detectedBuildings.items():
for building in buildings:
road = searchRoad(building)
positions = calculatePositions(building, road)
if len(shortestPositions) == 0 or len(positions) < len(shortestPositions):
shortestRoad = road
shortestPositions = positions
print len(shortestPositions)
showRoad(shortestPositions)
def searchMap(event):
print "Search Map"
global robotPos,roads,detectedBuildings,delay
actions = []
#roads = set()s
#roads.add(robotPos)
#fringe = util.Stack()
initNode = (robotPos,[],[]) # (position,forwardActions,backwarsdActions)
#fringe.push(initNode)
roads.add(robotPos)
search(initNode)
#searchConsiderTopVisit(initNode, set())
print detectedBuildings
print len(detectedBuildings)
#path = AstarSearchBetweenbuildings((6,21), (2, 18))
#showPath((6,21),(2,18), path)
'''
shortestRoad = set()
for block1 in detectedBuildings.values():
roads = set()
for block2 in detectedBuildings.values():
if not block1 == block2:
(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)
#showPath(buildingA,buildingB,path)
positions = calculatePositions(buildingA,buildingB,path)
roads = roads | positions
if len(shortestRoad) == 0 or len(roads) < len(shortestRoad):
shortestRoad = roads
print len(shortestRoad)
showRoad(shortestRoad)
'''
'''
block1 = detectedBuildings.values()[3]
print block1
block2 = detectedBuildings.values()[5]
print block2
(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)
print buildingA,buildingB,path
showPath(buildingA,buildingB,path)
block1 = detectedBuildings.values()[10]
print block1
block2 = detectedBuildings.values()[20]
print block2
(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)
print buildingA,buildingB,path
showPath(buildingA,buildingB,path)
'''
searchShortestRoad()
'''
path = searchRoad()
#path = AstarSearchRoad()
positions = calculatePositions(robotPos, path)
print len(positions)
showRoad(positions)
delay = True
#runAction(path)
'''
window.bind("<Up>", callUp)
window.bind("<Down>", callDown)
window.bind("<Right>", callRight)
window.bind("<Left>", callLeft)
window.bind("s", searchMap)
searchMapButton.bind("<Button-1>",searchMap)
window.mainloop()
下面的util.py使用的是加州伯克利的代碼:
# util.py # ------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). import sys import inspect import heapq, random """ Data structures useful for implementing SearchAgents """ class Stack: "A container with a last-in-first-out (LIFO) queuing policy." def __init__(self): self.list = [] def push(self,item): "Push 'item' onto the stack" self.list.append(item) def pop(self): "Pop the most recently pushed item from the stack" return self.list.pop() def isEmpty(self): "Returns true if the stack is empty" return len(self.list) == 0 class Queue: "A container with a first-in-first-out (FIFO) queuing policy." def __init__(self): self.list = [] def push(self,item): "Enqueue the 'item' into the queue" self.list.insert(0,item) def pop(self): """ Dequeue the earliest enqueued item still in the queue. This operation removes the item from the queue. """ return self.list.pop() def isEmpty(self): "Returns true if the queue is empty" return len(self.list) == 0 class PriorityQueue: """ Implements a priority queue data structure. Each inserted item has a priority associated with it and the client is usually interested in quick retrieval of the lowest-priority item in the queue. This data structure allows O(1) access to the lowest-priority item. Note that this PriorityQueue does not allow you to change the priority of an item. However, you may insert the same item multiple times with different priorities. """ def __init__(self): self.heap = [] self.count = 0 def push(self, item, priority): # FIXME: restored old behaviour to check against old results better # FIXED: restored to stable behaviour entry = (priority, self.count, item) # entry = (priority, item) heapq.heappush(self.heap, entry) self.count += 1 def pop(self): (_, _, item) = heapq.heappop(self.heap) # (_, item) = heapq.heappop(self.heap) return item def isEmpty(self): return len(self.heap) == 0 class PriorityQueueWithFunction(PriorityQueue): """ Implements a priority queue with the same push/pop signature of the Queue and the Stack classes. This is designed for drop-in replacement for those two classes. The caller has to provide a priority function, which extracts each item's priority. """ def __init__(self, priorityFunction): "priorityFunction (item) -> priority" self.priorityFunction = priorityFunction # store the priority function PriorityQueue.__init__(self) # super-class initializer def push(self, item): "Adds an item to the queue with priority from the priority function" PriorityQueue.push(self, item, self.priorityFunction(item)) def manhattanDistance( xy1, xy2 ): "Returns the Manhattan distance between points xy1 and xy2" return abs( xy1[0] - xy2[0] ) + abs( xy1[1] - xy2[1] )
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python Tkinter創(chuàng)建GUI應(yīng)用程序的示例
Tkinter提供了豐富的功能和靈活的接口,讓開(kāi)發(fā)者能夠輕松地構(gòu)建出各種各樣的圖形用戶(hù)界面,本文介紹了使用Python的Tkinter庫(kù)創(chuàng)建圖形用戶(hù)界面GUI應(yīng)用程序,感興趣的可以了解一下2024-12-12
Python使用Streamlit打造高效的測(cè)試數(shù)據(jù)生成器
這篇文章主要為大家詳細(xì)介紹了如何利用 Python 的 Streamlit 和 Faker 庫(kù),快速構(gòu)建一個(gè)簡(jiǎn)單實(shí)用的測(cè)試數(shù)據(jù)生成器,幫助測(cè)試工程師一鍵生成高質(zhì)量的測(cè)試數(shù)據(jù),感興趣的可以了解下2025-04-04
安裝Pycharm2019以及配置anconda教程的方法步驟
這篇文章主要介紹了安裝Pycharm2019以及配置anconda教程的方法步驟,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-11-11
在jupyter notebook中使用pytorch的方法
這篇文章主要介紹了在jupyter notebook中使用pytorch的方法,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2022-09-09

