Java多線程并發(fā)編程(互斥鎖Reentrant Lock)
Java 中的鎖通常分為兩種:
通過關(guān)鍵字 synchronized 獲取的鎖,我們稱為同步鎖,上一篇有介紹到:Java 多線程并發(fā)編程 Synchronized 關(guān)鍵字。
java.util.concurrent(JUC)包里的鎖,如通過繼承接口 Lock 而實現(xiàn)的 ReentrantLock(互斥鎖),繼承 ReadWriteLock 實現(xiàn)的 ReentrantReadWriteLock(讀寫鎖)。
本篇主要介紹 ReentrantLock(互斥鎖)。
ReentrantLock(互斥鎖)
ReentrantLock 互斥鎖,在同一時間只能被一個線程所占有,在被持有后并未釋放之前,其他線程若想獲得該鎖只能等待或放棄。
ReentrantLock 互斥鎖是可重入鎖,即某一線程可多次獲得該鎖。
公平鎖 and 非公平鎖
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
由 ReentrantLock 的構(gòu)造函數(shù)可見,在實例化 ReentrantLock 的時候我們可以選擇實例化一個公平鎖或非公平鎖,而默認(rèn)會構(gòu)造一個非公平鎖。
公平鎖與非公平鎖區(qū)別在于競爭鎖時的有序與否。公平鎖可確保有序性(FIFO 隊列),非公平鎖不能確保有序性(即使也有 FIFO 隊列)。
然而,公平是要付出代價的,公平鎖比非公平鎖要耗性能,所以在非必須確保公平的條件下,一般使用非公平鎖可提高吞吐率。所以 ReentrantLock 默認(rèn)的構(gòu)造函數(shù)也是“不公平”的。
一般使用
DEMO1:
public class Test {
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
mReentrantLock.lock();
try {
for (int i = 0; i < 6; i++) {
System.out.println(Thread.currentThread().getName() + ", i = " + i);
}
} finally {
// 必須在 finally 釋放鎖
mReentrantLock.unlock();
}
}
}
private static class MyThread extends Thread {
private Counter mCounter;
public MyThread(Counter counter) {
mCounter = counter;
}
@Override
public void run() {
super.run();
mCounter.count();
}
}
public static void main(String[] var0) {
Counter counter = new Counter();
// 注:myThread1 和 myThread2 是調(diào)用同一個對象 counter
MyThread myThread1 = new MyThread(counter);
MyThread myThread2 = new MyThread(counter);
myThread1.start();
myThread2.start();
}
}
DEMO1 輸出:
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5 Thread-1, i = 0 Thread-1, i = 1 Thread-1, i = 2 Thread-1, i = 3 Thread-1, i = 4 Thread-1, i = 5
DEMO1 僅使用了 ReentrantLock 的 lock 和 unlock 來提現(xiàn)一般鎖的特性,確保線程的有序執(zhí)行。此種場景 synchronized 也適用。
鎖的作用域
DEMO2:
public class Test {
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
for (int i = 0; i < 6; i++) {
mReentrantLock.lock();
// 模擬耗時,突出線程是否阻塞
try{
Thread.sleep(100);
System.out.println(Thread.currentThread().getName() + ", i = " + i);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 必須在 finally 釋放鎖
mReentrantLock.unlock();
}
}
}
public void doOtherThing(){
for (int i = 0; i < 6; i++) {
// 模擬耗時,突出線程是否阻塞
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
}
}
}
public static void main(String[] var0) {
final Counter counter = new Counter();
new Thread(new Runnable() {
@Override
public void run() {
counter.count();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
counter.doOtherThing();
}
}).start();
}
}
DEMO2 輸出:
Thread-0, i = 0 Thread-1 doOtherThing, i = 0 Thread-0, i = 1 Thread-1 doOtherThing, i = 1 Thread-0, i = 2 Thread-1 doOtherThing, i = 2 Thread-0, i = 3 Thread-1 doOtherThing, i = 3 Thread-0, i = 4 Thread-1 doOtherThing, i = 4 Thread-0, i = 5 Thread-1 doOtherThing, i = 5
DEMO3:
public class Test {
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
for (int i = 0; i < 6; i++) {
mReentrantLock.lock();
// 模擬耗時,突出線程是否阻塞
try{
Thread.sleep(100);
System.out.println(Thread.currentThread().getName() + ", i = " + i);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 必須在 finally 釋放鎖
mReentrantLock.unlock();
}
}
}
public void doOtherThing(){
mReentrantLock.lock();
try{
for (int i = 0; i < 6; i++) {
// 模擬耗時,突出線程是否阻塞
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
}
}finally {
mReentrantLock.unlock();
}
}
}
public static void main(String[] var0) {
final Counter counter = new Counter();
new Thread(new Runnable() {
@Override
public void run() {
counter.count();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
counter.doOtherThing();
}
}).start();
}
}
DEMO3 輸出:
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5 Thread-1 doOtherThing, i = 0 Thread-1 doOtherThing, i = 1 Thread-1 doOtherThing, i = 2 Thread-1 doOtherThing, i = 3 Thread-1 doOtherThing, i = 4 Thread-1 doOtherThing, i = 5
結(jié)合 DEMO2 和 DEMO3 輸出可見,鎖的作用域在于 mReentrantLock,因為所來自于 mReentrantLock。
可終止等待
DEMO4:
public class Test {
static final int TIMEOUT = 300;
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
try{
//lock() 不可中斷
mReentrantLock.lock();
// 模擬耗時,突出線程是否阻塞
for (int i = 0; i < 6; i++) {
long startTime = System.currentTimeMillis();
while (true) {
if (System.currentTimeMillis() - startTime > 100)
break;
}
System.out.println(Thread.currentThread().getName() + ", i = " + i);
}
} finally {
// 必須在 finally 釋放鎖
mReentrantLock.unlock();
}
}
public void doOtherThing(){
try{
//lockInterruptibly() 可中斷,若線程沒有中斷,則獲取鎖
mReentrantLock.lockInterruptibly();
for (int i = 0; i < 6; i++) {
// 模擬耗時,突出線程是否阻塞
long startTime = System.currentTimeMillis();
while (true) {
if (System.currentTimeMillis() - startTime > 100)
break;
}
System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
}
} catch (InterruptedException e) {
System.out.println(Thread.currentThread().getName() + " 中斷 ");
}finally {
// 若當(dāng)前線程持有鎖,則釋放
if(mReentrantLock.isHeldByCurrentThread()){
mReentrantLock.unlock();
}
}
}
}
public static void main(String[] var0) {
final Counter counter = new Counter();
new Thread(new Runnable() {
@Override
public void run() {
counter.count();
}
}).start();
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
counter.doOtherThing();
}
});
thread2.start();
long start = System.currentTimeMillis();
while (true){
if (System.currentTimeMillis() - start > TIMEOUT) {
// 若線程還在運行,嘗試中斷
if(thread2.isAlive()){
System.out.println(" 不等了,嘗試中斷 ");
thread2.interrupt();
}
break;
}
}
}
}
DEMO4 輸出:
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 不等了,嘗試中斷 Thread-1 中斷 Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5
線程 thread2 等待 300ms 后 timeout,中斷等待成功。
若把 TIMEOUT 改成 3000ms,輸出結(jié)果:(正常運行)
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5 Thread-1 doOtherThing, i = 0 Thread-1 doOtherThing, i = 1 Thread-1 doOtherThing, i = 2 Thread-1 doOtherThing, i = 3 Thread-1 doOtherThing, i = 4 Thread-1 doOtherThing, i = 5
定時鎖
DEMO5:
public class Test {
static final int TIMEOUT = 3000;
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
try{
//lock() 不可中斷
mReentrantLock.lock();
// 模擬耗時,突出線程是否阻塞
for (int i = 0; i < 6; i++) {
long startTime = System.currentTimeMillis();
while (true) {
if (System.currentTimeMillis() - startTime > 100)
break;
}
System.out.println(Thread.currentThread().getName() + ", i = " + i);
}
} finally {
// 必須在 finally 釋放鎖
mReentrantLock.unlock();
}
}
public void doOtherThing(){
try{
//tryLock(long timeout, TimeUnit unit) 嘗試獲得鎖
boolean isLock = mReentrantLock.tryLock(300, TimeUnit.MILLISECONDS);
System.out.println(Thread.currentThread().getName() + " isLock:" + isLock);
if(isLock){
for (int i = 0; i < 6; i++) {
// 模擬耗時,突出線程是否阻塞
long startTime = System.currentTimeMillis();
while (true) {
if (System.currentTimeMillis() - startTime > 100)
break;
}
System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
}
}else{
System.out.println(Thread.currentThread().getName() + " timeout");
}
} catch (InterruptedException e) {
System.out.println(Thread.currentThread().getName() + " 中斷 ");
}finally {
// 若當(dāng)前線程持有鎖,則釋放
if(mReentrantLock.isHeldByCurrentThread()){
mReentrantLock.unlock();
}
}
}
}
public static void main(String[] var0) {
final Counter counter = new Counter();
new Thread(new Runnable() {
@Override
public void run() {
counter.count();
}
}).start();
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
counter.doOtherThing();
}
});
thread2.start();
}
}
DEMO5 輸出:
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 Thread-1 isLock:false Thread-1 timeout Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5
tryLock() 嘗試獲得鎖,tryLock(long timeout, TimeUnit unit) 在給定的 timeout 時間內(nèi)嘗試獲得鎖,若超時,則不帶鎖往下走,所以必須加以判斷。
ReentrantLock or synchronized
ReentrantLock 、synchronized 之間如何選擇?
ReentrantLock 在性能上 比 synchronized 更勝一籌。
ReentrantLock 需格外小心,因為需要顯式釋放鎖,lock() 后記得 unlock(),而且必須在 finally 里面,否則容易造成死鎖。
synchronized 隱式自動釋放鎖,使用方便。
ReentrantLock 擴展性好,可中斷鎖,定時鎖,自由控制。
synchronized 一但進入阻塞等待,則無法中斷等待。
相關(guān)文章
完美解決Server?returned?HTTP?response?code:403?for?URL報錯問題
在調(diào)用某個接口的時候,突然就遇到了Server?returned?HTTP?response?code:?403?for?URL報錯這個報錯,導(dǎo)致獲取不到接口的數(shù)據(jù),下面小編給大家分享解決Server?returned?HTTP?response?code:403?for?URL報錯問題,感興趣的朋友一起看看吧2023-03-03
SpringBoot Scheduling定時任務(wù)的示例代碼
springBoot提供了定時任務(wù)的支持,通過注解簡單快捷,對于日常定時任務(wù)可以使用。本文詳細(xì)的介紹一下使用,感興趣的可以了解一下2021-08-08
認(rèn)證授權(quán)中解決AuthenticationManager無法注入問題
這篇文章主要介紹了認(rèn)證授權(quán)中解決AuthenticationManager無法注入問題,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2024-10-10

